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Abstract. For a long time, the absence of explicit Green’s functions (fundamental solutions) for electroelas-
tic media has hindered progress in the modelling of the properties of piezoelectric materials. Michelitsch’s
recently derived explicit electroelastic Green’s function for the infinite medium with hexagonal symmetry
(transversely isotropic medium) [4] is used here to obtain compact closed-form expressions for the elec-
troelastic analogue of the Eshelby tensor for spheroidal inclusions. This represents a key quantity for the
material properties of piezoelectric solids and analysis of the related electroelastic fields in inclusions. For
the limiting case of continuous fibers our results coincide with Levin’s expressions [8]. The derived method
is useful for an extension to non-spheroidal inclusions or inhomogeneities having an axis of rotational
symmetry parallel to the hexagonal c-axis.

PACS. 77.22.-d Dielectric properties of solids and liquids

1 Introduction

Within the last decades, the modelling of the properties
of electroelastic coupled materials containing piezoelectric
inclusions and inhomogeneities has become of great inter-
est due to the increasing technological importance of such
materials as sensors and actuators.

The elastic Eshelby tensor plays a fundamental role
for purely elastic inclusion problems [1]. For electroelastic
media a generalization exists [2,3], namely the electroelas-
tic analogue of the Eshelby tensor (EAET). The EAET,
which is a key quantity for the study of electroelastic fields
in ellipsoidal inclusions, is an operator consisting of four
tensors of fourth, third and second ranks.

Here our goal is to present compact explicit expressions
for the components of the EAET for the case of spheroidal
inclusions embedded in a medium with hexagonal sym-
metry having the same electroelastic characteristics. The
treatment of the EAET of hexagonal material systems
is desirable since many polycrystalline materials, such as
uniaxial poled piezoelectric ceramics, show macroscopi-
cally hexagonal (transversely isotropic) symmetry where
the poling axis then coincides with the hexagonal c-axis
(axis of symmetry). In spite of the fact that many other
piezoelectric materials have tetragonal or rhombohedral
symmetry, one can describe their piezoelectric properties
by assuming hexagonal symmetry (for only which the
EAET can be obtained in closed form) as a very good
approximation. For a medium with hexagonal symmetry,
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closed-form calculation of the EAET is feasible since the
electroelastic Green’s function that is required for this task
is available for such a medium in explicit form [4].

To define this Green’s function, we consider a homoge-
neous electroelastic material under isothermal conditions.
The linear relations which govern such a material have
the form

σij = Cijklεkl − ekijEk
Di = eiklεkl + ηikEk.

(1)

Here σ and ε are the stress and strain tensors, E and D
are the electric field and dielectric displacement vectors,
respectively. C = CE is the elastic moduli tensor for a
fixed E vector, η = ηε indicates the permeability tensor
for a fixed strain, and e denotes the tensor of piezoelectric
constants which characterizes the related electroelastic
effects. Relations (1) can conveniently be written in the
following short form

J=LF , J =
(
σ
D

)
, L =

(
C e
eT −η

)
, F =

(
ε
−E

)
. (2)

The “matrix” L must be regarded as a linear operator
which connects the tensor-vector pair [σ,D] with the
analogous pair [ε,E]. The superscript T denotes the
transposition operation.
The field equations for the stress tensor σ (equation
of equilibrium) and dielectric displacement vector D
(equation of conservation of free electric charges) are
given by

∂jσij = −Ki, ∂lDl = ρe (3)
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whereK is the density of body forces and ρe is the density
of free electric charges. Introducing the electric potential
Φ and the elastic displacement field u, the ansatz for the
strain ε and the electric field E is given by:

εij =
1
2

(∂iuj + ∂jui)

Ei = −∂iΦ.
(4)

Putting ansatz (4) using (1) into the field equations (3)
we obtain a 4 × 4 differential equation of degree two for
the field U = (u, Φ) of the form:

T (∇)U +F = 0. (5)

Here we introduced the gradient operator ∇ = (∂i) (i =
1, 2, 3) with respect to the spatial coordinates r = (x, y, z).
In (5) we have introduced the generalized force density
F = (K,−ρe).

The symmetric 4×4 second-order differential operator
T (∇) can be written in the form

T (∇) =
[
T (∇) t (∇)
tT (∇) τ (∇)

]
(6)

where T (∇) is a 3 × 3 tensor operator that represents
the elastic part. Its components are given by:

Tij (∇) = Cipjq∂p∂q. (7)

The vector operator (3 × 1 tensor) t (∇) has
the components

ti (∇) = epiq∂p∂q (8)

which represent the piezoelectric coupling. Finally the
scalar operator

τ (∇) = −ηpq∂p∂q (9)

describes the dielectric part.
The paper is organized as follows: In Section 2 we give

a brief outline of the theory of the electroelastic static
Green’s function of the infinite medium. There we in-
troduce Michelitsch’s explicit electroelastic Green’s func-
tion of the infinite medium with hexagonal symmetry
[4]. In Section 3 we derive using this Green’s function
the closed-form expressions for the components of the
EAET for spheroidal inclusions or inhomogeneities. From
these results we evaluate the limiting case of continuous
fibers, which coincides with Levin’s former result for the
EAET [8].

2 Electroelastic Green’s function

The vector field U of equation (5) can be represented by
the 4× 4 electroelastic Green’s function G according to

U (r) =
∫
G (r − r′)F (r′) d3r′. (10)

Consequently the 4×4 electroelastic Green’s function has
the general structure

G(r) =

(
G(r) γ(r)

γT (r) g(r)

)
(11)

where G(r) is a second-rank tensor, γ(r) is a vector,
and g(r) is a scalar function. It follows from (5) that the
Green’s function satisfies the equation

T (∇)G(r) + δ3(r)I = 0, I =
(
I 0
0 1

)
(12)

with δ3(r) representing the spatial δ-function, I the 3× 3
and I the 4× 4 unit tensor.

The Green’s function (11) has the following physical
interpretation [4]:

Gmk(r) is the elastic displacement in the xm-direction
at a space point r due to a unit point force at r′ = 0
in the xk-direction (m, k = 1, 2, 3);
γm(r) is the elastic displacement in the xm-direction
at a point r caused by a unit point charge at r′ = 0;
(m = 1, 2, 3)
γTk (r) is the electric potential at point r caused by a
unit point force at r′ = 0 in the xk-direction; (k =
1, 2, 3)
g(r) is the electric potential at point r caused by a
unit point charge at r′ = 0.
The electroelastic Green’s function (11) is symmetric,
i.e. Gpq = Gqp (p, q = 1, 2, 3, 4).

Explicit evaluation of the Cartesian representation of
the electroelastic Green’s function (11) for the infinite
medium with hexagonal symmetry, was obtained by
Michelitsch in the form [4]

G (r) =
4∑
l=1

1√
Alρ2 + z2


g

(l)
11 g

(l)
12 g

(l)
13 g

(l)
14

g
(l)
12 g

(l)
22 g

(l)
23 g

(l)
24

g
(l)
13 g

(l)
23 g

(l)
33 g

(l)
34

g
(l)
14 g

(l)
24 g

(l)
34 g

(l)
44

 . (13)

Here we introduce the spatial Cartesian coordinates
(x, y, z) with the z-axis being parallel to the hexagonal
c-axis (axis of symmetry) and ρ =

√
x2 + y2. In (13) we

have used the abbreviations:

g
(l)
11 =

1
El

[
−Γb(−Al)

x2z2−y2
(
Alρ

2 +z2
)

ρ4
+Λb⊥(−Al)

]
(14)

g
(l)
22 =

1
El

[
−Γb(−Al)

y2z2−x2(Alρ2 +z2)
ρ4

+Λb⊥(−Al)
]

(15)

g
(l)
12 =

1
El

[
−Γb (−Al)

xy(Alρ2 + 2z2)
ρ4

]
(16)
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g
(l)
13 =

1
El

[
−Γbc (−Al)

xz

ρ2

]
(17)

g
(l)
23 =

1
El

[
−Γbc (−Al)

yz

ρ2

]
(18)

g
(l)
33 =

1
El
Λc (−Al) (19)

g
(l)
14 =

1
El

[
−Γb4 (−Al)

xz

ρ2

]
(20)

g
(l)
24 =

1
El

[
−Γb4 (−Al)

yz

ρ2

]
(21)

g
(l)
34 =

1
El
Λc4 (−Al) (22)

g
(l)
44 =

1
El
Λ4 (−Al) (23)

and

El = 4πC66A
4∏

j=1,(j 6=l)
(Aj −Al) (24)

with A1 = C44/C66. The numbers A2, A3, A4 are the zeros
of the equation:

Aa3 −Ba2 + Ca−D = 0 (25)

where the coefficients A,B,C,D are given by

A = −η11C11C44 − C11e
2
15 (26)

B = −η33C11C44−η11

(
C11C33−2C13C44−C2

13

)
−C44e

2
15

− 2C11e15e33 + 2 (C13 + C44) e15 (e31 + e15)

− C44 (e31 + e15)2 (27)

C = −η33

(
C11C33 − 2C13C44 − C2

13

)
− η11C33C44

− 2e15e33C44 − e2
33C11 + 2e33 (e31 + e15)

× (C13 + C44)− C33 (e31 + e15)2 (28)

D = −η33C33C44 − e2
33C44. (29)

We furthermore introduced in (14)-(23) the quantities:

Γb (a) =
1
a

[Λb⊥ (a)− Λb (a)] (30)

Γbc (a) =
1√
a
Λbc (a) (31)

Γb4 (a) =
1√
a
Λb4 (a) (32)

together with

Λb⊥(a) = Aa3 +Ba2 + Ca+D (33)

Λb (a) = − (C66a+ C44)
[

(η11a+ η33) (C44a+ C33)

+ (e15a+ e33)2
]
, (34)

Λbc (a) =
√
a (C66a+ C44)

[
(e31 + e15) (e15a+ e33)

+ (η11a+ η33) (C13 + C44)
]
, (35)

Λc (a) = − (C66a+ C44)
[

(η11a+ η33) (C11a+ C44)

+ a (e31 + e15)2
]
, (36)

Λb4 (a) =
√
a (C66a+ C44)

[
(C13 + C44) (e15a+ e33)

− (C44a+ C33) (e31 + e15)
]
, (37)

Λc4 (a) = − (C66a+C44)
[

(C11a+C44) (e15a+e33)

− a (C13 + C44) (e31 + e15)
]
, (38)

Λ4(a)=(C66a+C44)
[
a2C11C44+a

(
C11C33−2C13C44−C2

13

)
+ C33C44

]
. (39)

Here the 10 independent electroelastic moduli of a medium
with hexagonal symmetry are introduced: five elastic mod-
uli C ={C11, C13, C33, C44, C66}, three piezoelectric con-
stants e = {e15, e31, e33} and two permeability coefficients
η = {η11, η33}. The explicit form (13) for the Green’s func-
tion was derived using a method of integral transforma-
tion [5].

3 Inclusion problem

Inclusions of the same electroelastic characteristics that
are considered here can be regarded as spatial domains
which are allowed to undergo both uniform eigenstrain
and -electric field. Physical examples where the assump-
tion of uniform eigenstrains and -electric fields holds are
domains containing phase transformation strains, induced
eigenstrains by e.g. thermal expansion coefficient mis-
match, and electric fields caused by a spontaneous po-
larization.
The EAET S is then a linear operator which connects
the induced fields F with a uniform eigenstrain and -
electric field F ∗ inside the (ellipsoidal) inclusion according
to [2,3,6]

F = SF ∗. (40)

A new proof is given in [6]. The crucial point that comes
into play in the derivation of (40), and consequently to
obtain the EAET in explicit form, is the evaluation of the
P-operator, which is defined by the integral [2,3,6]∫

V

∇G(r − r′)d3r′ = P · r, (r ∈V ) (41)
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where V denotes the volume of the inclusion.

We consider in the following a spheroidal inclusion
with semi-axes (a1 = a2 = a, a3) consisting of material
with hexagonal symmetry which is embedded in a matrix
of hexagonal symmetry with the same electroelastic
characteristics. We assume that the semi-axis a3 of the
inclusion coincides with the c-axes (x3-axis) of both
the inclusion and the matrix. For an evaluation of
integral (41) the explicit electroelastic Green’s function
G(r) is needed from [4]. The P-operator generally takes
the form

P =
(
P H
HT p

)
, (42)

consisting of three tensors P ,H,p of fourth-, third-, and
second rank, reflecting the symmetries of the material
characteristics, i.e. rank 4 of the elastic-, rank 3 of
the piezoelectric-, and rank 2 of the dielectric tensor,
respectively. The P-operator can be then conveniently
written in the form

P =P1T2 +P2

(
T1− 1

2
T2

)
+P3(T3 +T4)+P5T5 +P6T6

(43)

H = H1U1+H2U2+H3U3 (44)

p = p1t1+p2t2. (45)

Here we introduced a useful tensor basis for hexagonal
symmetry which is formed by the unit vector m parallel
to the hexagonal c-axis (with components mi) and by the
projector θij = δij −mimj onto the plane perpendicular
to the c-direction:

T 1
ijkl = θi(kθl)j , T

2
ijkl = θijθkl, T

3
ijkl = θijmkml,

T 4
ijkl = mimjθkl, (46)

T 5
ijkl = θi)(kml)m(j , T

6
ijkl = mimjmkml, U

1
ijk = θijmk,

(47)

U2
ijk = 2m(iθj)k, U

3
ijk = mimjmk, t

1
ij = θij , t

2
ij = mimj .

(48)

The convenience of this tensorial basis is a consequence of
the following properties: summing the products of the T -
basis tensors over two indices forms a closed algebra. The
sum of the products of the U -basis tensors over one index
yields tensors of the T -basis and summing over two indices
yields tensors of the t-basis. The t-basis is orthogonal with
respect to contraction by one index, i.e. triαt

s
αj = δrst

r
ij (no

summing over r!).

The coefficients in (43), (44) and (45) are obtained as:

P1 = −1
8

4∑
l=1

Λb(−Al)
El

J
(l)
1 , (49)

P2 = −1
8

4∑
l=1

Λb(−Al) + Λb⊥(−Al)
El

J
(l)
1 , (50)

P3 = −1
8

4∑
l=1

Γbc(−Al)
El

(
J

(l)
1 − ξ2AlJ

(l)
2

)
, (51)

P5 = −1
4

4∑
l=1

1
El

{
[Λc(−Al) + Γbc(−Al)] J(l)

1

+ [Λb(−Al)+Λb⊥(−Al)−AlΓbc(−Al)] ξ2J
(l)
2

}
,

(52)

P6 = −1
2

4∑
l=1

Λc(−Al)
El

ξ2J
(l)
2 , (53)

H1 = −1
8

4∑
l=1

Γb4(−Al)
El

(
J

(l)
1 − ξ2AlJ

(l)
2

)
, (54)

H2 = −1
8

4∑
l=1

[
Γb4(−Al)

2El

(
J

(l)
1 − ξ2AlJ

(l)
2

)
+
Λc4(−Al)
El

J
(l)
1

]
, (55)

H3 = −1
2

4∑
l=1

Λc4(−Al)
El

ξ2J
(l)
2 , (56)

p1 = −1
4

4∑
l=1

Λ4(−Al)
El

J
(l)
1 , (57)

p2 = −1
2

4∑
l=1

Λ4(−Al)
El

ξ2J
(l)
2 . (58)

Here ξ = a/a3 denotes the ratio of the semi-axes of the
inclusion. For spheroidal inclusions having an axis of ro-
tational symmetry parallel to the hexagonal c-axis, the
evaluation of (41) yields only two types of integrals com-
ing into play in (49–58): These integrals are determined
by the shape of the inclusion, thus we call them “shape-
integrals”. They have the form

J
(l)
1 = 4πAl

1∫
−1

(1− u2)du

[1 + (ξ2 − 1)u2] [Al + (1−Al)u2]
3
2

= 8πλ2
l

[
1− 1

2
ξ2Alλl ln

(
λl + 1
λl − 1

)]
, l = 1, 2, 3, 4

(59)
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J
(l)
2 = 4π

1∫
−1

u2du

[1 + (ξ2 − 1)u2] [Al + (1−Al)u2]
3
2

= 8πλ2
l

[
1
2
λl ln

(
λl + 1
λl − 1

)
− 1
]
, l = 1, 2, 3, 4 (60)

where λl = (1−Alξ2)−
1
2 . Equations (59) and (60) remain

valid when λl is complex. The shape effects of the inclusion
on the P-operator and consequently on the EAET are
completely determined by these shape-integrals (59) and
(60). These results can easily be extended to the case of a
non-spheroidal inclusion or inhomogeneity having a shape
of rotational symmetry with respect to the hexagonal c-
direction. Then ξ in (59) and (60) becomes u-dependent,
characterizing the shape of the inclusion.

The EAET S defined in (40) is an operator with the
general structure [6]

S =
(

S −q
Q −s

)
. (61)

Here we introduced the tensor S of rank 4, the tensors Q
and q of rank 3, and the tensor s of rank 2. Using tensor
basis (46–48) the EAET (61) assumes the form:

S = S1T2+S2

(
T1−1

2
T2

)
+S3T3+S4T4+S5T5+S6T6

(62)

Q = Q1U1T +Q2U2T +Q3U3T , q=q1U1+q2U2+q3U3,
(63)

s = s1t1+s2t2. (64)

Here we have introduced the abbreviations

S1 = 2P1(C11 − C66) + P3C13 +H1e31, S2 = 2P2C66,

(65)
S3 = 2P1C13 + P3C33 +H1e33,

S4 = 2P3(C11 − C66) + P6C13 +H3e31, (66)
S5 = 2(P5C44 + 2H2e15), S6 = P6C33 + 2P3C13 +H3e33,

(67)
Q1 = 2H1(C11 − C66) +H3C13 + p2e31,

Q2 = 2H2C44 + p1e15, (68)
Q3 = 2H1C13 +H3C33 + p2e33, (69)

q1 = H1η33 − 2P1e31 − P3e33, q2 = H2η11 −
1
2
P5e15,

(70)

q3 = H3η33 − 2P3e31 − P6e33 (71)
s1 = p1η11 − 2H2e15, s2 = p2η33 − 2H1e31 −H3e33.

(72)

We now consider the limiting case a3 →∞ (ξ → 0), corre-
sponding to the continuous cylindrical fiber. In this limit-

ing case the general expressions (49–58) assume the form

P1 = −π
4∑
l=1

Λb(−Al)
El

,

P2 = −π
4∑
l=1

Λb4(−Al) + Λb⊥(−Al)
El

, (73)

P3 = π
4∑
l=1

Γbc(−Al)
El

,

P5 = −2π
4∑
l=1

1
El

[Λc(−Al) + Γbc(−Al)] , (74)

P6 = 0, H1 = −π
4∑
l=1

Γb4(−Al)
El

,

H2 = H1 − 2π
4∑
l=1

Λc4(−Al)
El

, (75)

H3 = 0, p1 = −2π
4∑
l=1

Λ4(−Al)
El

, p2 = 0. (76)

These sums are evaluated in the appendix (Eqs. (A.11–
A.13) and (A.19–A.23)). Taking into account these results
we obtain

P = − 1
4C11

T2−1
4

(
1
C11

+
1
C66

)(
T1−1

2
T2

)
− 1

2

(
C44 +

e2
15

η11

)−1

T5 (77)

H = − e15

4(η11C44 + e2
15)

U2, p =
1
2

(
η11 +

e2
15

C44

)−1

t1.

(78)

The components of the EAET for the continuous
fiber are given by (62–64) together with the general
relations (65–72) by using results (77–78). These results
for the continuous fiber coincide with those obtained in a
series of papers [7–9] employing other techniques.

4 Conclusions

Results (62–64) together with (65–72) represent the
EAET in closed form and hold for spheroidal inclusions
having rotational symmetry with respect to the hexag-
onal c-axis. The generalization of these results to non-
spheroidal inclusions with such symmetry only modifies
the shape-integrals (59) and (60).
Our results may be useful for a treatment of many
inclusion- and inhomogeneity problems of the coupled
electroelasticity and may stimulate future work.



532 The European Physical Journal B

Appendix

Here we consider expressions of the form

αS3 + βS2 + γS1 + δS0 =
4∑
l=1

p(−Al)
ElAl

, (A.1)

where p(−Al) is a polynomial of third-order in −Al

p(a) = αa3 + βa2 + γa+ δ. (A.2)

Let us now consider the function

h(a) =
p(a)
f(a)

=
1

4πAC66

p(a)
(a+A1)(a+A2)(a+A3)(a+A4)

· (A.3)

Since the numerator p(a) is a third-order polynomial and
the denominator f(a) a fourth-order polynomial in a, we
can decompose h(a) in the form

h(a) =
4∑
l=1

hl
(a+Al)

, (A.4)

where the constant coefficients hl are given by

hl = (a+Al)h(a)|a=−Al . (A.5)

From this equation we obtain

hl =
p(−Al)
El

, (A.6)

where we use the definition of the El

El = 4πC66AΠ
4
j=1,j 6=l(Aj −Al). (A.7)

We thus can write

h(a) =
4∑
l=1

p(−Al)
El(a+Al)

=
1

4πAC66

p(a)
(a+A1)(a+A2)(a+A3)(a+A4)

· (A.8)

Equation (A.8) holds if p(a) is a polynomial of at most
third order in a. Putting a = 0 in this equation we obtain

h(a = 0) =
4∑
l=1

p(−Al)
ElAl

=
1

4πAC66

δ

A1A2A3A4
=

δ

4πC44D
, (A.9)

where δ = p(a = 0) from equation (A.2) has been used.
Thus only the term S0 corresponding to the zero-order
term in Al contributes. The terms Sn corresponding to

the powers Anl (n = 1, 2, 3) yield vanishing contributions.
From equation (A.9) we therefore read off the property

4∑
l=1

αA2
l + βAl + γ

El
= 0. (A.10)

From this equation, it follows that sums consisting of
terms with quadratic functions of Al in their numerators
are vanishing. This holds for the sums

4∑
l=1

Γb(−Al)
El

= 0, (A.11)

4∑
l=1

Γbc(−Al)
El

= 0, (A.12)

4∑
l=1

Γb4(−Al)
El

= 0. (A.13)

To evaluate the remaining sums with cubic functions of
Al in their numerators we have to evaluate the following
sum:

H = −
4∑
l=1

A3
l

El
· (A.14)

Because of the vanishing of (A.10) we can conclude that
H can also be written in the more convenient form

H =
4∑
l=1

(A2 −Al)(A3 −Al)(A4 −Al)
El

· (A.15)

This representation of H has the advantage that it can be
evaluated in a straight-forward manner to arrive at

H =
(A2 −A1)(A3 −A1)(A4 −A1)

E1
=

1
4πC66A

, (A.16)

to obtain for (A.14)

H = −
4∑
l=1

A3
l

El
=

1
4πC66A

· (A.17)

Here we have used the fact that in equation (A.15) the
terms with l = 2, 3, 4 are vanishing, thus only the term
with l = 1 contributes. Using (A.17) together with (A.10)
we arrive at

−
4∑
l=1

αA3
l + βA2

l + γAl + δ

El
=

α

4πC66A
, (A.18)

where α, β, γ, δ denote arbitrary constants. Thus only the
powers A3

l contribute to (A.18). Using (A.18) we read the
remaining sums of equations (73–76) that contain terms
with powers A3

l in their numerators to obtain

4∑
l=1

Λb(−Al)
El

=
1

4πC11
, (A.19)

4∑
l=1

Λb⊥(−Al)
El

=
1

4πC66
, (A.20)
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4∑
l=1

Λc(−Al)
El

=
1

4π
(
C44 +

(e15)2

η11

) , (A.21)

4∑
l=1

Λc4(−Al)
El

=
e15

4π (C44η11 + (e15)2)
, (A.22)

4∑
l=1

Λ4(−Al)
El

=
−1

4π
(
η11 +

(e15)2

C44

) · (A.23)
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